SOME PLANE ADIABATIC IDEAL GAS FLOWS
CONTAINING SHOCKS

M. D. Ustinov

We obtain the solution describing adiabatic flows of an ideal gas characterized by the two
parameters a and b such that

[a] =Lm+1T_1, [b] — ML~2f2m
where m is arbitrary (m > 0). This solution permits the construction of flows containing
shocks.

1. Assume that in the region y > 0 an ideal (i.e., without viscosity and thermal conductivity) perfect
gas travels parallel to the Ox-axis and has the following parameters:
p=0,v=0, u=u, (@) =ay™, p=p,(y) = by"! (1.1)
and passes through a normal shock, The conditions on the shock have the form [1]
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In view of the presence of the pressure gradient in the direction of the Oy-axis, the flow behind the
normal shock is described by the system of equations {2]

8 v 0 w a 1 o1 3 v

e T PET T PEw = wmr Tyl (1.3)
2 2 )
St —wm, = ()

Here u and v are the velocity components along the Ox~ and Oy~ axes, respectively; p is pressure; p
is density; ¥ > 1 is the adiabatic exponent; f, and iy are arbitrary functions. The independent variables §
(the function introduced by Martin [3]) and n (the stream function) are defined by

dt = puvdy — (p -+ pv?) dz, dn = pudy — pvdx (1.4)
The constants a and b in (1.1) and the variables § and n have the following dimensions:
la] = L™1T1, (8] = ML, [El = MT2, ] = MLTt (1.5)

Therefore the only dimensionless parameter is the quantity s = £a~?b™1 and the functions in (1.3) can
be written in the form
u = abn iU (s), v = a2tV (s), s = Ea™2b7! (1.8)
p= q*ly’nma@m*l)/’"b(m*l)/mP (.S‘), p= n(zmq)/ma,(x—zm)[.mb(lam)/mR (3)

The dimensionless functions U, V, P, and R satisfy the system of equations obtained from (L.3),
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Here H and Cy are arbitrary constants (the functions f, and i, are defined to within a constant factor),
The stream function 7 does not undergo a discontinuity upon passing through the shock. Therefore
dn = pouydy = aby™dy
Hence
y™ = mu(ab)™
Since the image of the shock in the én-plane is the line s = 0 [2], we write conditions (1,2) for the
functions U, V, P, and R in the form

Ulomy — (YTT_H%;" V]imy =0
Ry = TEL mmevim, Pl = T_% mem (1.8)
Solving (1.7) and using (1.8), we find
P=1tR, R= I_i_i mem-1)/m (\%)Y“Y*”, = (72}:1;22 (1.9)
s = (;’%:T—g 7%(1 — %—i%m%) dr

T

The equations of the streamlines behind the shock can be written in parameteric form (taking the

shock as the Oy-axis)
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Thus, (1.6), (1.9), and (1.10) completely describe the gas flow behind a normal shock,

Directly behind the shock V (1y) = 0. Therefore, with motion along any streamline 7 = const down-
stream from the shock 7 decreases from 7, (at the shock) to 0, and V=0, x, y—~» as 7 =0, We denote
by o the slope of the streamlines to the Ox-axis. Behind the shock @ = 0, as we move downstream « in-
creases to some value 04,55 and then decreases to 0. It is not difficult to show using (1.9) that the value
Omax, corresponding to the inflection point on the streamline, is independent of n and is reached for T=7y,

where
M= s T— i 1

. M=oo_m Yy ! Ty = T Dme e tg dmax = ey

Y= ay

p=by—7¢2m .

el 73 We further find from (1.9)
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Hence, and also from (1.10), we see that the lines along which M =

const are straight lines passing through the coordinate origin, Specific-

Fig. 1
ally, the sonic line (M = 1) of the flow behind the shock is a straight line
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and the locus of points of inflection of the streamlines behind the shock {Fig. 1). Taking any line n = const
as the wall, we obtain the flow past a curvilinear .contour,

2. Let us assume that a gas having parameters (1.1) passes through an oblique rectilinear shock.

Using the known relations for a strong obligue shock [1], we can show that the flow behind the shock is
described as before by solution (1.9), in which T, is to be replaced by 7 sin 28 where 8 is the slope of the
shock to the Ox-axis, This means that in the flow shown in the figure any straight line y = kx can be taken
as the oblique shock,

On the basis of the solution obtained here and using the substitution principle [4], we can construct
non-self-similar adiabatic flows containing shocks,
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